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Minimization of Ostwald Ripening of Dispersed Particles*

By Hiroshi Arai**

It is very important to suppress the coarsening of dispersed particles in heat resisting alloys in order
to prevent the deterioration of the high temperature strength. However, the theoretical systematization

has not been given adequately.

The purpose of this article is to find out general rules of minimization of the coarsening of dispersed
particles on the basis of the thermodynamical equilibrium and the generalized Ostwald ripening equa-
tion. It is concluded that the most stable combination is made in the binary alloy in which (1) the main
component of the matrix has the least chemical binding force for the formation of dispersed particles
and the main component of the dispersed particles has the greatest chemical binding force and (2) the
sufficiency ratio of the main metal component of the dispersed particles to the whole dispersed particles is
1/2. These rules agree with the experimental results on some heat resisting alloys.
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1. Introduction

Fine particles being dispersed and dis-
tributed in a metallic material, its strength is
improved in general. This phenomenon is uti-
lized not only for the alloys of precipitation
hardening and oxide dispersion hardening
types but also in the fundamental fields such
as precipitation of carbide or nitride in iron
and steel very extensively, Accordingly many
studies have been carried out on its hardening
mechanism itself and in relation to the dis-
persed states. However, the theoretical system-
atization has not been established adequately
for the phenomenon in which the creep strength
is deteriorated due to the aggregation and
coarsening of dispersed particles in them as in
the case of heat resistant materials.

To cope with increasing demand for the
materials of high temperature strength, it is
very important for the material development
to systematize the theories as a gunide to sup-
press the aggregation and coarsening of dis-
persed particles in materials and to prevent the
deterioration in strength at elevated tempera-
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tures.

The purpose of this report is to analyze the
Ostwald ripening of dispersed particles on the
basis of thermodynamical equilibrium between
the dispersed particles and matrix alloy, and to
systernatize the theories to explain which condi-
tions should be provided for suppressing the
coarsening of dispersed particles in materials.

II. Osiwald Ripening and Strength

The coarsening of dispersed particles occur-
ring after they reached to a stage nearly in
thermodynamical equilibrium with the matrix
alloy is the phenomenon that ““larger dispersed
particles ripen and smaller ones disappear®’ in
order to reduce the interfacial energy between
them and the matrix alloy, which is known as
the Ostwald ripening.

The concept of this Ostwald ripening was in-
troduced originally in relation to the coasening
of dispersed particles in liquid solutions, and
its basic theoretical equations were derived by
Lifshitz, Slyozov!" and Wagner®, and the
equations for ripening applicable to solid
phases in binary alloys were obtained by
Oriani®, Li er al.¥.

The present author has given the following
equation for the Ostwald ripening in the com-
position of multiple systems by generalizing it
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in solid phases by paying attention to the stress
generated through the volume change at its
reaction”;

o 8af IR X
ra_9(1—a)RT/Z[CD(C C)] W

where 7, is the mean diameter of dispersed par-
ticles; £ is the elapsed time; o is the interfacial
energy between the matrix and dispersed par-
ticles; o is the one-third power of volume ratio
at the dispersed particles; R is the gas constant;
T is the absolute temperature; C; is the molar
concentration of component i in the matrix
(molar fraction/molar volume); C{ is the
molar concentration of component i in the dis-
persed particles; and D; is the volume diffusion
coefficient of component i in the matrix.

On the basis of this result, the following
three means can be considered for suppressing
the coarsening of dispersed particles, that is, to
make ¢ smaller, to make « smaller or to make
L in the following equation larger:

L= [— c-cr . @
Among them, the means of making o smaller
lacks in the degree of freedom from the view-
point of alloy design, though it can be attained
by raising the crystalline conformity between
the matrix and dispersed particles. And the
means of making o« smaller has only an in-
sufficient effect and causes rather an unfavor-
able lowering of strength due to the decrcase
of the dispersed particles, though it can be
achieved by reducing the total amount of dis-
persed particles.

Therefore, the coarsening of dispersed par-
ticles at elevated temperatures can be sup-
pressed in practice only by the means of making
L in eq. (2) larger. For this reason, in this
report the conditions for maximizing L are
derived on the basis of eq. (1) by introducing
the thermodynamical component equilibrium
into it.

According to the theory by Orowan'®, the
yield strength of the alloy containing dispersed
particles 7 has the following relation with the
mean particle distance 27, and mean particle
diameter r.:
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-Fa):l/?b (3)

Then if the volume ratio of dispersed particles
is taken as v,

TOCI/(f'b_

S

and 7, related to the yield strength is given by
the following equation:

o 8at IR TR
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Therefore, it is proper to use eq. (2) in the case
of dealing with the coasening of dispersed par-
ticles and that (5) in the case of doing with the
yield strength. But both of the equations are
coincident with each other except for the term
of y. For this reason eq. (2) will be used for the
following general examinations and eq. (5)
only in particular cases.

(p=(Fa/Fh)3

JII. Conditions for Minimization of Ostward

Ripening

1. In the case of dispersed particles
approximating to ideal solution model

A thermodynamical equilibrium exists be—
tween the composition C; in the matrix and c!
in the dispersed particles in the stage of the
Ostwald ripening. Now assuming that the
chemical bond of dispersed particles may be
carbide, nitride or oxide, it is generalized as
M,X,. Here M indicates that the metal compo-
nent contained i in the ratio y;, and X means
carbon, nitrogen or oxygen. Expressing in the
form of chemical reaction, the following for-
mula is obtained:

a{nM1+»M]+. . .} +[X]=M.X:. (6)

Namely, y; means the molar fraction of the
metal component i in the dispersed particles ex-
cepting carbon, nitrogen or oxygen X from
them and has the [ollowing relation with cl,if
the molar volume of the metal M is taken as
Va:

= VHC? (7)
2 =1 (8)

And also the molar fraction of metal compo-
nent iin the matrix x; has the following relation
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with C,, if the molar volume of matrix is taken
to be V,:

x=VnC 9)
Six=1. (10)

Then, for the reaction formula shown in (6),
at first let us consider the case where the ac-
tivity of metal compound in the dispersed
particles can be approximated by the ideal
solution model. In this case the following e-
quation holds for the component i from the
equilibrium between the matrix and dispersed
particles, that is, in relation to the common
tangential face which touches the free energy
curved surface of each phase.

RTIn a;+% RTIhhax=AG+RTIny, (1)

where a;, and ax are the activities of compo-
nent i and X in the matrix, and if their ac-
tivities are taken as y; and yx,

a; = PiXx; (12)

ax = PxXx. (13)
And also AG; is the change of Gibbs free
energy when the pure metal of component i
reacts with X and forms b/a[M.X,]. From egs.
(11) and (12), the relation between x; and y; is
given as follows:

AG;
yi=ai-a§f/‘”-exp(— )

RT
4G,
— ,bla) i
=g P — - Xi. 14
X ¥ exp( RT) X (14)
For simplifying the expression of eq. {14),
f=ai" (15)
and
_ ( AGi) 16
gi=yexp| — o (16)

are used, then eq. (14) can be expressed as
follows:

y=fgix. (17)

Accordingly to the relations between eqs. (8)
and (10) the following equation can be ob-
tained:
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As already mentioned, it is necessary for sup-

pressing the coarsening of dispersed particles
to make L in eq. (2) larger. Assuming the
chemical reaction shown in eq. (6) for L, and
separating the terms of the metal component
and carbon, nitrogen or oxygen, L can be ex-
pressed as follows:

(CI—CY (Cx—Cx)
= +
£ Z oD, Cx Dy

Here, since in general the volume diffusion
coefficient Dy of component X is considerably
larger in comparison with 2, the second term
of eq. (19) can be neglected. And also it is
assumed that the volume diffusion coeflicients
of metal components i in the matrix D; are ap-
proximately equal to each other in order to
simplify the computation and the following
relation is valid:

Diz=Dy=Dy=.

S (18)

(19)

=D (20,

where D is the value represented by the volume
diffusion coefficient of component mainly con-
stituting the dispersed particles. Then L can be
arranged as follows by using the egs. (8), (10),
(17) and (18):

I Vatyi (Ve
= — | —=2l = I»ntx
DVmZ [( Va) Xi (Ve)y x]
l B sz yi Vm
=— | [=7] = =2(—]|+1
DVm (Vﬁr) Zx,- <V9) ]

1 [/ V¥ » Ve
= e i __2(_)"'1}
DV _(_Vg) 2oy 27 =25,

— 1 —(E)z 2 / 2
“ov. [\7, >9ix/ (O gix)

)]

(22)
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Based upon the above preparation, i=0 is
assigned to the main component constituting
the matrix and i=1-~n to the other alloy com-
ponents. But since for i=1~n its general
character is not lost by ordering of g,, it is de-

=D1Vm {(;) |:90+Z(9'1 gﬁ)xi] / {90"’4’? (9"_90)"(’]2_2 (%)H}

Hiroshi Arai

fined as
Q’légz‘égg,é. . =4,

Then from egs. (10) and (22}, L can be exp-
ressed as follows:

(23)

It can be differentiated with respect to x, in order to obtain the condition for its maximum

value:
dL 1
dx]1 DV,
Therefore,
(gaFg0) D, gixi=2 2 gix. (25)
[i] 0
By arranging this equation,
= (g, 90)91)(.
FuXn= Z gixi—2 Z} . (26)

Also by introducing eq. (17) into the above
equation,

" ‘(gl

Zyl 22

Then by using ¢q. (8) the following equation is
abtained:

1 Z(g—goyi
p=— > . 28
) le dn— 9o 28)

By substituting this into eq. (21}, the maximum
value of L can be obtained as follows:

A G
= _— — | —4—
DV, I\ V, 2 2\g, @

22 (gn— (g — go) ]
s B

Lmax

] Godndi
Vi
(%)l
Ve
(29}

It is apparent from this result that in the case
of ¢,>> g0, L can be made much larger when the
value of y(i=1~n—1) is minimized, or no
alloying element is contained. On the contrary,
in the case of ¢; < gy, the value of y; should be

(V )2{(% g%)(Z:] glx.)z—z(gn—go) Z:) gixi.ég?‘xi} / (Z glxl) =0.

(24)

as large as possible, indicating the preferability
of replacing the main component in the
matrix. Accordingly, in short, it is suitable for
L to choose the minimum composition of &
for the main component of the matrix and the
maximum one of g for that of dispersed par-
ticles. In this case, regardless of the values of g
and ¢,, ¥o and y, are given from eqs. (8) and
(28) g, to be

Yo=n=0.5, (30)
and from eq. (29)
1 Vi ¥/ n
Lmax=w[1 ( )(g 2 +2)
DVm 4 V do Tn
z(V“‘)H (31)
7o+
lf gn>>g0:
1 V¥ Gn
Lops=—"—"17"1]1l—1. 32
e 4DVm(V9)(go) 32)
However, in general the third element is

added in the case of heat-resistant materials
for the purpose of improving its oxidation
resistance or the strength of its matrix. Even in
such a case, if g.>>¢;, go holds, the maximum
value of L is given at »,=0.5, and it is ex-
pressed from eq. (29) as follows:

- (I
% -2)]

L max —
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=4D1Vm (%)2(%)'2% Z ("Z_)

1 (VaV/ g i
= — =2 iXi-
4DVm(V9)(gn) g"/ 2.9 (33
L |
And also from the relation y,= 2 y;=0.5
and eq. (17), !

n—1
FoXo= D GiX.. (34)
4]

Then the equation can be simplified into the
form
1 Vo X/ o ol g
or ) [ 3 (5 )
4DV \ Vy do 0 o

1 (Vm)z/
TaDVL \ v, 1

But while xo~x,— can have arbitrary values as
the alloy components, x, is limited to the value
so that y,=0.5 holds. The above results may
be summarized as follows;

{1) When the main component (i=0) of
the matrix has the composition which min-
imizes ¢ and the main component (i=n) of
the dispersed particles is the second element
which maximizes g;, the Ostwald ripening is
suppressed most intensively. In such a case the
composition in which the Ostwald ripening is
minimum is x,=g¢/g. and yo=y,=0.5.

(2) Even if it is required for improving the
heat resistance of strength of matrix to add
the third element, the Ostwald ripening is
minimum at x,=(goXo+ g1X| + Jo—1Xa—1)/ ¢> and
¥.=0.5 where ¢.>¢;, ¢ holds.

(3) Namely, the Ostwald ripening is
minimum in general at y,=0.5, if g.>a, %
holds.

Under the above conditions, let us make test
computation by assuming a binary or ternary
alloy. In this case the direct computation of L
requires the evaluation of diffusion coefficient
D and molar volumes of dispersed particles V.,
and V¥, and is too complicated. For this
reason, a part of eq. (22) is defined as follows:

Lo=Y, gix/ () gixi). (36)

Then all the changes of L caused by the compo-
nent can be integrated to L,.
On the other hand, as shown in eq. (3), when

Lma.x =

(35
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the creep strength is taken into consideration,
the value of 7, is a most interesting factor.
Now, if the amounts of the components n and
X which constitute the dispersed particles and
are fixed in them are taken to be X, and ¥, the
total amounts of n and X including those in a
state of solid solution in the matrix are:

Un =X, + X%, =X+ (a/ b)y.Xx 37

HX=XX+/\_')(. (38)

Since the volume ratio of dispersed particles ¢
is proportional to (a/b)%x, the creep strength 7
can be expressed from eqgs. (3) and (5) as
follows:

a 173
Tocl/Fboc((aL)‘”oc[(g) fog] . 39

And when the effect of composition on the
creep strength is indicated, the sufficiency ratio
of the component n to that X,

s (BN (b]a@)x,t+ yaXx
SNTAMCLES2,

40
a Xx+Xx (40)

Ux
can be used in many cases. For illustrating by a
diagram, therefore, [a/b-%xLo]'” as the corre-
sponding value to the creep strength will be
taken as the ordinate and n as the abscissa.
For a binary alloy, the cases of g./g,=2000,
4000, 6000, 8000 and 10000 are shown in Fig. 1
and for a ternary alloy the cases of x,=0, 0.1,
0.2 and 0.4 at ¢./g,=1000 and ¢/g,=10 in
Fig. 2. In cither cases the values are computed
assuming that x is sufficiently small and (a/b)
ux=0.005. As is obvious from the figure, 1, is
not so much affected by g./¢o or the presence
of the third element and shows a maximum
value at #=0.5. Furthermore, when xy is rela-
tively large, the main component of matrix
does not form dispersed particles and only the
alloying element n forms them. In this case »
can be computed by introducing the relation
derived from eqgs. (13), (15) and (17),

xx=— (Yo Q‘oxu)(am
rx

Yo /b /6 1o
=(—) Jyxgd =y pg®,  (41)

Xo

into eq. (35). For simplifying the computation,
the cases of g,/go= 10000 and yxgo=0, 0.0025,
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Fig. ! Relation between the sufficiency ratio of n compo-

nent to X component and the creep strength factor vary-
ing g,/g, in the binary system.
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Fig. 2 Relation between the sufficiency ratio of n compo-
nent to X component and the creep strength factor in
the ternary system.

0.005 and 0.0075 are computed under the
assumption of {(a/b)=1 as shown in Fig. 3. In
this case 1, is also found to show the mafiimum

25
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as 05 10 5

_b u
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Fig. 3 Relation between the sufficiency ratio of n compo-
nent to X compenent and the creep strength factor when
X component is soluble in matrix,

value at #=0.5.

2. In the case of a dispersed particles
approximating to regular solution
model

Up to now the case in which the dispersed
particle can be approximated to the ideal solu-
tion medel has been discussed, but the approx-
imation to the regular one based on the interac-
tion between the component elements into
consideration is more practical. In the followig
for the sake of simply, a binary alloy will be
considered. In such a case the following
equilibrium equation holds instead of eq. (11):

RTIn ay+ (b/a)RT In ax
=AGy,+RTIn y,+Qy: (42)
RTIn an+(b/a)RT In ax
=AG,+RTIn y.+ Q3. (43)

Here @ denotes the parameter of the interac-
tion. Therefore, from the equilibrium relation
as is the case with eqs. (14)-(18), the following
equations can be obtained:

Q
— 2
JGoXo= Yo €Xp (RTyn)



- Q 2
—(1=y2) exp (F Tyn) (44)
Q 2
SO Xn=yn eXp ( R—Tyo)
— Q 2
. exp [ o (1=3) ] 4s)

Then

Q
Faon= (?) . [R—T(l —yn)ﬂ . 6

Accordingly, the following equation can be ob-
tained;

X.= fgoJCn — _y exp |:uf_z_ (1 _y )2j
" fgoxo+ faoxn " RT o

Go 0 _ a8 )
/[gﬁ(l Yo} €Xp (RTyn

Q 2

+ynep | @137 @7
For the relation between # and 1o, the computa-
tion is carried out for the cases of Q/RT=—1,
0 and 1 on condition of g./g,=8000 and the
results are shown in Fig. 4. When @ >0, the two
kinds of metal in the dispersed particles are
repulsive, the maximum value of L shifts to the
range of #2>>0.5, and when Q<Q, that is, two
kinds of metal in the dispersed particles are at-
tractive, the maximum value of L shifts to the
range of #<0.5.

3. In the case of coexistence of two kinds
of dispersed particle

Up to now the case only one kind of dis-
persed particles exists has been discussed. In
effect, however, there are cases where two kinds
of dispersed particle such as MC and MG
coexist in the component equilibrium state. If
two kinds of dispersed particles are taken to be
MM, and M,X,;, the case would be in an
equilibrium state shown as follows {returning

YoVm
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Fig. 4 Relation between the sufficiency ratio of n compo-
nent to X component and the creep strength factor when
matrix and n component have mutual interaction in
dispersed particles.

to the conditions of approximation to ideal
solution model):

RTIna,+(b/@)RTIn ax=AG,+RTIn y,
(48)
RTIna,+(b/a)RTIn ax=AG,+RTIn y,
(49)
RTIna,+('/a)RTIh ax=AG,+RTIn yy
(50)
Rtln g, +(b'/a})RT In ax=AG,+RTIn y,.
(51)
Here, b/a'<b'/a’, i.e. a’'b<ab’. From eqs.

(48)-(51) the following relation can be ob-
tained:

A=ydl=pm)

(AG,,—AG,’,;&- AG,’,—AGH)
p .

RT (52)

Since the left side has the value generally smaller enough than unity, the approximation y,,
Y<K 1 holds. Then y, and y,, can be obtained as follows (the deriving process of equations omit-
ted here):
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yn:asﬂb‘/a’b—n exp [

—(ab'/a'b—DAG,—AG,+AG,
(ab'/a ) } 53)

RT

(ab'/a' PYAG,—AG,,

yr'n:an—j(ab‘/u‘b—l) exp [

Namely, while the two kinds of dispersed
particles coexist, x, and xx or y, and y, do not
change, and only the quantitative relation be-
tween M,X, and M,X', do, even though the
added amount of component n increases. Are
M. X, and M. X, subjected to the Ostwald ripen-
ing according to eq. (1), holding the compo-
nent equilibrium between them? If both are
subjected to ripening, only M,X, takes part in
its ripening and disappearance and M; X is left
in a stable state. However, from the positional
relation between the two kinds of dispersed
particles, the following four kinds of ripening
and disappearing phenomena may occur:

(1) M.X, ripens and M,X, disappears

(2) M.X, ripens and M.X,, disappears

(3) M:X; ripens and M,X, disappears

(4) M.X; ripens and M.X; disappears.

As already explained, while these two kinds of
dispersed particles coexist, with the amount
change of component n, x, and xx in a state of
solid solution in the matrix and ya, Ym, ¥+ and
. of the respective dispersed particles do not
change and only the amounts of M,X, and
M.X: do. Then L, shows a constant value for
M.X, and M;X; of the dispersed particles as
shown in eq. (36). As defined by b/a<d'/a’
for M, X, and M;X,, the ripening of M,X; is
slower than that of M,X,. Therefore, L, shows
the maximum value when the additive amount
of component n is increased up to the point
where the existence ratio of M.X; comes to
have the maximum value, that is, the existence
of M.X, approaches zero. The value of # is
nearly equal to y, =1~y Since yy, is the value
obtained from eq. (54) and is small enough,
L, shows the maximum value when # has a

Table 1

Solubility products of typical carbide and nitride in steel (Narita

RT ]

value a little smaller than unity (for instance,
0.8 —1.0). This is the characteristic feature of
the case where the two kinds of dispersed par-
ticles coexist. And it shows the same tendency
that metals forming the dispersed particles are
repulsive.

(54)

4, Conditions for solid solution treatment

In the above study the general conditions for
suppressing the Ostwald ripening of dispersed
particles are made clear. In each case g./go
plays an important role. And the larger the
following formula at #=0.5, the more ripen-
ing is suppressed:

Ga_tn

(AGO_ AG“)
Fo Yo )

RT

However, needless to say, this rule becomes
significant only when particles can be dispersed
finely at the initial stage. As recognized in
some of oxide dispersion hardening alloys, it is
preferable to make the particles disperse finely
by the mechanical alloying method, but in the
case where the precipitation reaction is uti-
lized, there is another limitation. Namely, for
the utilization of the precipitation reaction, it is
necessary to carry out solution treatment of
the components constituting the dispersed par-
ticies in the alloy. In this case, the indefinite
enlargement of g, to results in loss of ways to
bring them into the solid solution state. To
have a suitable solubility product is a necessary
condition in this case. For reference, for the
representative carbide and nitride in iron and
steel their solubility products are shown in
Table 19®,

CTKE})_

Temp./K  [V][C] [l\fb][C] [Ta][C]. [TC]  [Ze)[C) [VIIN] [NbJ(N]  [Ta]IN]  [Tij[N]  [Zr][N]

1573 —
1373

7.0%10°° 4.0%107° 9.8%107° 3.2x10°° 5.7x107¢ 7.4x 1077 1.1x107*8.8x 107 ""3.9x107"
3.2xE07% 1.3%107° 9.0 1077 1.1x107° 1.3x 107 % 8.8x1077 1.2x1077 7.0%x 107" — — ‘
1173 2.0%107° 1.3%1077 1.2% 1077 4.4%10°% 1.2x 1077 7.0x107% L1x10™* 1LEx107° — —

o ",

N
A
|
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| IV. Comparison with Practical Materials

Since the relation between the Ostwald ripen-
ing of dispersed particles and the components
constituting them has been systematized, it will
be applied here after to the examples of prac-
tical high temperature strength materials. Of
course, the Ostwald ripening under creep is
somewhat different from the above observa-
tion because of the nonuniform diffusion in-
duced by excess vacancies or dislocation migra-
tions under the stress. However, the relative
performance can be roughly similar.

At first the well-known TD nickel and the
like in which oxides of Th, Y, etc. are finely dis-
persed in Ni or Co base by the coprecipitation
method or the mechanical alloying method are
given as an example utilizing the principle ‘“the
particle ripening becomes minimum when the
ratio of g, of the main component in the
matrix to ¢, of the main component in the dis-
persed particles, go/¢,, iS maximum’’. While
Th, Y, etc. form the most stable oxides, Ni and
Co are difficult to form their oxides and
representative high melting point substances
having superior heat resistance, Therefore, TD
nickel and the like are the material in which
go/ 9. is highest among the practical materials.

On the other hand, in the iron base alloys
there are some examples of oxide dispersion
hardening, but they are not practical, and the
precipitation hardening type utilizing the solid
solution and precipitation treatments is main-
ly brought into practice. For instance, the
austenitic stainless steel or heat resistant steel is
alloyed with Cr for improving its heat resistance
or with Ti and Nb and TiC, NbC or Cr:»Cs con-
taining Ti and Nb for improving its creep
strength. As such materials hold an important
position as practical ones, there are many
papers on the relation between the additive
amount of Ti, Nb or C and their creep
strength. The main results of the previous
papers are compared with those obtained in
this work,

At first Shinoda et a/." directed their atten-
tion to the fact that the creep strength of
austenitic stainless steel changes remarkably
with to the charges and ascertained that small
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Fig. 5 Relaticn between (Ti+ Nb)/C and creep rupture
stress in 18-8 stainless steel. (Shinoda et a.*")

additions of Ti and Nb are effective, showing
that the creep rupture strength reached a max-
imum at (Ti+Nb)/C (atomic ratio)=0.25.
The relation of creep rupture stress with C/
(Ti+Nb) in their paper is converted to
(Ti+ Nb)/C for comparison with Figs. 1-4 as
shown in Fig. 5.

Mimino et /.4 added Nb and Ti simul-
taneously to 18Cr-8Mn-6Ni steel and show-
ed that the creep strength reached a maxi-
mum at (Ti-+Nb)/C (atomic ratio)=0.2. Then
Tanaka ef @l."™? investigated the effect of
a separate addition of Ti and Nb to 304 type
stainless steel and showed that the creep
strength reached a maximum at Ti/C (atomic
ratio)=0.8 and Nb/C (atomic ratio}=0.2
—-0.4.

On the other hand, Yamada et a/."¥"? in-
vestigated the effect of a separate addition of
Ti to 15Cr-14Ni steel and showed that the
creep strength reached a maximum at {Ti+ Nb)
/C (atomic ratio})=0.5-1.0. At the same time
they considered that the carbide distribution
state was releated to the improvement of creep
strength by the addition of Ti and gave the rela-
tion between the distribution density of dis-
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Fig. 6 Relation between Ti/C and square root of
distributed density of carbide in 15Cr-14Ni stainless
sieel. (Yamada et al."")

persed particles in the heat treatment 1323-
1573 K and Ti addition as shown in Fig. 6.
Although in the original report the number of
dispersed particles per um’ on a log scale is
taken as the ordinate and the amount of Ti as
the abscissa, in Fig. 6 the root of number of dis-
persed particles per m’ (proportional to the
mean distance between the dispersed particles)
is taken as the ordinate and Ti/C (atomic
ratio} as the abscissa for comparison with Figs.
1-4,

Then Kaneso et al.!'® investigated the effects
of addition of Ti to 304 type stainless steel and
obtained the results as in the past. And Ohta
ef al."® investigated also the effects of addition
of Ti to 15Cr-15Ni-2.5Mo steel and-obtained
the results as shown in Fig. 7 for the relation
between the creep strength and Ti/C.

Furthermore, these effects of addition of Ti
or Nb can be observed not only on austenitic
stainless steels but also on 12Cr heat resistant
steel, and Takahashi et @/."” showed that the
creep strength reached to the maximum at Nb/
C (atomic ratio) of 0.15.

As mentioned above, it is widely known that
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Fig. 7 Relation between Ti/ C and creep rupture strength
in 15Cr-15Ni-2.5Mo stainless steel. (Ohta er al."®)

the creep strength reaches the maximum at Ti /
C or Nb/C of 0.2-0.8. The causes of this
phenomenon seem to be related to the carbide
distribution state as pointed out in the
literature, and it is considered that the present
investigation on the ripening rule of dispersed
particles is useful in a certain extent, in view of
the similarity between Figs. 1-4 obtained
theoretically and Figs. 5-7 obtained by the ar-
rangement of practical examples.

Y. Conclusion

For the coarsening phenomenon of dis-
persed particles in heat resistant materials
strengthened by them theoretical systematiza-
tion is tried on the basis of the thermody-
namical equilibrium and generalized Ostwald
ripening equation, and the following conclu-
sions are obtained:

(1) In order to suppress the coarsening of
carbide, nitride or oxide, it is preferable for the
main component of the matrix to be the com-
position of the least chemical binding force
and for that of the dispersed particies to be the
composition of the greatest binding force to
carbon, nitrogen or oxygen.
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(2) JIn such a case, the coarsening of dis-
persed particles can be suppressed to the max-
imum extent generally at the sufficiency ratio
of metal constituting the main component of
dispersed particles to carbon, nitrogen or ox-
ygen # of 0.5, which is supported by the rela-
tion between the amount of Ti, Nb and C addi-
tions in austenitic stainless steel or heat resis-
tant steel and its creep strength.

(3) However, when the dispersed particles
exist in two kinds of the chemically binding
states or a repulsive interaction acts between
the metals constituting the dispersed particles,
the coarsening of dispersed particles becomes
minimum at # of 0.5-1.0.
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