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Role of Induced Stress in Ostwald Ripening
in Solid Matrices *

By Hiroshi Arai**

Ostwald ripening in solid matrices is studied theoretically considering the stress around dispersed
particles induced by the volume gap.
Under the condition that the diffusion in the matrix compensates the volume gap, a ripening rate equa-
tion is derived as follows:
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The equation is a generalized one for multi-component system and covers all conventional formulas.
Under the condition that the creep deformation takes place to compensate the volume gap, the equation

is given as follows:

F'=notA exp (—Q./RT) (5) [U—V"] ‘.
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The results of calculation have revealed that the creep deformation is more dominant than the iron
diffusion’to compensate the volume gap for cementite coarsening in ferrite below 973 K.
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I. Introduction

The coarsening behavior of precipitated par-
ticles in the later stage of aging is well known
as Ostwald ripening that larger particles grow
and smaller particles shrink so as to decrease
the total interfacial energy between the matrix
and the particles.

This Ostwald ripening has been known since
1900, but the first theoretical consideration
had to wait for Greenwood” in 1955, After
that, Lifshitz, Slyozov®” and Wagner®
presented the fundamental theoretical coarsen-
ing equation. However, the application of
their theory to the coarsening of precipitates in
solid matrices was very limited, because the
theory principally dealed with solution of the
problems of the coarsening of precipitates in
fluid. The precipitation in solid matrices
generally produces volume change, and this
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volume gap should be dissolved by diffusion or
plastic deformation.

The first investigation from this view-point
was done by Oriani. He introduced the
volume constraint condition that there be no
net volume change when the dislocation loop
generation can be shown to be absent. He
presented two diffusion mechanisms, i.e.
volume coupling diffusion and simple coupling
diffusion. Which mechanism takes place
depends on the entropy formation rate.

Consecutively, Li et al.® generalized the
theoretical equation introducing ‘‘coupling
force” for the volume constraints. At present,
the theoretical coarsening equation by Li ef al.
is usually adopted. But there are some
obscurities in the driving force for the dissolu-
tion of the volume gap in both treatments by
Oriani and Li ef al. Moreover there are com-
plexities and mistakes in their multi-compo-
nent treatment.

As well known, diffusion i1s controlled by
chemical potential gradient which includes
pressure gradient on the ground of Gibbs-
Duhem relation. Precipitation or dissolution
in solid matrices generally induces volume
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change and local stress, i.e. pressure, This
pressure must be considered to be the driving
force of diffusion for the dissolution of the
volume gap.

The present paper presents a generalized
Ostwald ripening equation for a multi-compo-
nent system. It starts from Gibbs-Cuhem rela-
tion and discusses whether the pressure in-
duced by precipitation or dissolution can cause
plastic deformation for the dissolution of the
volume gap.

II. Model of Precipitation Field

Conventional theories pay no attention to
the relative position of precipitates, but the
relative position is important for the treatment
of diffusion or plastic deformation in stress
field. For convenience’ sake precipitated par-
ticles and their territories are schematically
modeled as shown in Fig. 1. Here, r. is the
radius of a precipitated particle and r; is the ter-
ritory radius of the particle. r, is assumed to be
proportional to r,. Therefore, ra/ry is given by
the volume fraction of precipitated particles.

Using this model, muiti-particle problems
can be simplified to be a single particle prob-
lem. After this preparation, the author in-
vestigated how the pressure induced by the
volume change affects the Ostwald ripening in
either case with or without plastic deforma-

Precipitated Particle
( radius ; e )

Territory
{radius; re )

Fig. 1 Globular model of precipitated particles and their
territories.
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tion. As the most general expression,

a[A]+b[Bl+c[Cl+ - =[ABCe -] (1)

is used for the precipitation reaction, in which
each of A, B, C--- stands for each element.
III. Without Plastic Deformation

We shall start from the Gibbs-Duhem rela-
tion,

CAdﬂA+ CBdHB‘F Ccdﬂc+ - =dP, (2}

as a basic equation. Here Ca, Cp, Cc- -+ and
las HB, He-*+ stand for the concentrations ex-
pressed by moles per unit volume (molar frac-
tion/molar volume) and the chemical poten-
tials of element A, B, C-- -, and P stands for
the pressure.

At first, Gibbs-Duhem relation is applied to
the matrix part of a growing or shrinking
precipitate (r,) and the matrix part of a steady
radius precipitate (F,). The difference in Gibbs-
Duhem relation between the two parts is given
as

CaApa+Codup+Cclpct - =AP. (3)

Similarly in the case in which Gibbs-Duhem
relation is applied to the precipitate part, the
difference in the relation is given as

ClAun+Chaps+CeBpc+- -

:AP+(20/ra'_26/fa)s (4)

because the surface tension of the curved inter-
face gives rise to a pressure difference, 2¢/r. In
eq. (4)

Aun=pn—jin is the difference in chemical
potential of element N be-
tween r, and 7, particles.

AP=pP—Pis the difference in pressure
acting on the surface between

r. and 7, particles.
g is the interfacial energy between matrix and
precipitate. C% is the concentration expressed
by moles per unit volume (molar fraction /
molar volume) of element N in the precipitate.

Now we pay attention to the boundary part

of the growing or shrinking precipitate. The
diffusive flux of N atoms in matrix resulting
from the chemical potential gradient is ex-
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pressed as

JN=

_ Dy (ﬂi‘ﬁ)
RT \ dr /-, ~

where R is the gas constant, T is the absolute
temperature and Dy is the volume diffusion
coefficient of element N in matrix. The flux Jx
also satisfies the following equation from flux
balance across the interface between matrix
and precipitate:

dr.

J~=(C‘?~.—Cn)a- (6)

Equating eqgs. (5) and (6), we obtain

dr, CnDy de)
6_ —_— —
(Cr=Cng, RT (dr o9

As the diffusion of each element N toward
the particle becomes steady after a short time,
the quation, .

d
4nr? —;N =constant,
r

8

is satisfied. Introducing the boundary condi-
tions at r=r, and r=r; to the eq. (§),

%Aﬁm( Pl )
dr 2 \rm—r/)’

(%

is driven. From the eqs. (7} and (9), the follow-
ing equations are obtained.

Apn=PH(CR—Cn)/CnDn (10)
and
ﬁ:—(l—a)raRT(E), {11
d¢

where o is r./ry, which depends on the volume
fraction of precipitates.
On the other hand, from the eqs. (3) and (4),
we obtain
2¢ 20

DHCR—Cau=—"——".
N Fa Fa

(12}
Thus substituting the eq. (10) for Aun in the

eq. (12), we finally obtain

% an

ie.

2 2
(C%—CN)Z]——“—T" ,
T, r.

& a

(13

dr___ 20 (1_1)
df (1—a)rRT\F. r.

1
Cci—C 2}.
/ 2 [CNDN (Cx= 6w
AP can be also obtained sustituting the eq. (10)
for Auy in the eq. (3).

(14)

AP:[)’%] B};(C&—CN)]. (15)

From the eqs. (13) and (15), AP is rewritten as

AP:(Z_—U—Z—U) z [J_(c‘;—cN)]
N -DN

Fa I
1
Chv—C 2].
5] o5 e
Now, in order to solve the differential eq. (14),

we assume the relation between r, and F, as
follows.

(16)

p=ra/Fa. (17
Then the following equation is obtained.

Py (p—l) 20t
i o/ (1—a)RT

1
/ 2 [CNDN (C?‘"C”)z}’ (18)

where F, has the maximum value at p=1.5.

As Wagner” used p=1.5 for his coarsening
rate equation after the rigorous analysis, we
also set p=1.5. Then the generalized Ostwald
ripening rate equation is given as

8 1
F3=9(1—Zt)RT / 2i [CNDN (Cg_c“)z]' 19

1. Comparison with Li ef al.

Li et al.® gave the solution for the two com-
ponent system (cementite precipitation in steel)
as follows;

e 8at )
*"ORT CreDreVie+CeDc Vi

Viet—= V.
F CFE C

20)

CFeDFe CC DC Vg VFe [ CC ]

Where Ve and Ve are the mole volumes of Fe
and C, and V,is 3Ve+ Ve.

In order to make comparison with the
results of Li ef af., we introduce two equations,
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Vi=aVa+bVetchet:--
(Ve=3Ve 1+ Vo) (21)
and
CaVa+CaV+CcVet---=1
(Cee Ve +Cc Ve=1). (22)
Then the eq. (19) is converted to
. Bat
9(1—a)RT
_ CeDrCcDc Vi ( 1 )2
CreDpe Vic+CeDc Ve \Cee—3Cc )
(23)

On the other hand, the eq. (20) given by Li ef
al. also can be converted to
8at CeeDecCcDc Vi
9RT CreDsVi+CcDcVE
1+ CeVe
Ci(l—Cc Vo)’

which is in agreement with the eq. (23) when o
and C, have low values.

Fi=

(24)

2. Comparison with Wey er al.

To express the mole fraction in an alloy car-
bide, it is convenient to use the existence ratios
of metal elements except carbon in the Fe-M-C
system, such as (Fe;-»M,).Cy. Then the eq.
(19) becomes

L 8o Vit /[z _ 2( 1 + b )
A=5t—aRT! " O™ \Cobr t Cun
11
20—V (-5

1 1
2 _ 2 -
+Ve(b—Cc V) (DFE+Dm)

+

(b—Cc Va)z]- 25)

CeDc

To simplify the eq. (25), we assume Dp.— Dy
and VFe= Vlv[.

. 8aVi /|: a(y—xy
Fa=9M—)RT | Lx(x— 1} Du(Cre+Ch)
L (Cret+ CuX(b—Cc Vo) Ve
Dy
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b-—-Cc Vi)
O CeVor N ;_;C 2) ] (26)
If CcDc is large enough and
Y
)(c)(’l—f;) Vi VL, 27)

Ostwald ripening is controlled by the diffusion
of element M.
8aVsDu  x(1—x)
9*(1—a)VuRT (y—x)*
_ 8aViDu _1-x
92’ (1 —~a)Vu x(K—1)*"’
where K is y/x.

This result roughly agrees with the ripening
rate equation which Bjérklund et al.® pro-
posed on the alloy cementite in steel,

8c VgDM
27RTx(K—1)?"’

Fi=

(28)

Fi=

(29)

or the ripening rate equation which Wey et
al.® obtained by generalization of the
Bjorklund method,

8o VoDux

_3:
T aRT(y—x) (30)
because
V.g GVM+VC)
1— =(1—x) | ———=
09 (g7) =00 (5

—(— Ye
=(1 x)(1+aVM) @31)

approachs 1, when Vc¢/aVy and x are small
enough.

IV. With Plastic Deformation

In the preceding chapter the pressure around
the precipitate was shown to be the driving
force of the diffusion to dissolve the volume
gap. If the pressure is large enough to generate
plastic deformation, the situation would be
quite different. This problem is very important
for the precipitation of carbide or nitride in
steel, however the quantitative discussion has
not been proposed.

In this chapter we discuss the Ostwald ripen-
ing with plastic deformation. For this purpose,
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Elastic Deformation zone

Plastic Deformaotion zone

Precipitated
particle

ra : Precipitated particle radius

rb : Territory boundary radius

re ;. Plastic deformation limit

Fig. 2 Plastic deformation and elastic one around a
precipitated particle.

we analyze the relation between the stress
around the precipitate and the plastic deforma-
tion using the schematic representation as
shown in Fig. 2.

From the theory of solid mechanics, the
relation between the pressure around the
precipitate and the plastic deformation is given

as
3
AP=20, [m (’—) 41 (1—’—;)1
Ta 3 rs

and the displacement is given as

(u)r=r ME[ r_z 2 ( rg
—‘—E (1 V)rg 3(1 2v) (1 3

Ta

(32)

_2(1—2\’) In (rc/ra):|a (33)
where ¢, is the elastic limit, i.e. the creep
strength, £ is the elastic modulus and v is
Poison’s modulus. For convenience’ sake, we
discuss the Fe-C system.
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1. C diffusion control

First, we discuss the extreme case in which C
can diffuse very fast but Fe can not diffuse en-
tirely. In this case the volume gap must be
dissolved only by the plastic and the elastic
deformation. This problem is equivalent to
calculating the pressure induced by dilating the
precipitated ball from

rVeed VO =r/(1+ Ve /3Ve)?  (34)

to r=r,. As this dilatation corresponds to the
volume change, the following relations are ob-
tained from the eq. (33).

=1+ Ve/3Ved P = Ve /9Vre

a

_os[_ (rY 2 o
=Z[a-w(Z]-Fa-m (-7

3
—2(1—2v) lnﬁil =Z1—v) ("—) . (39)
T E r

a a

Therefore,
2\ 1 : .
AP=2g, [m (i) - (1—%)}:205 In (1)
Fa 3 I Ia

VeE ]

_2 _ Ve
=5 o] Vel — Ve, ¢

is obtained from the eqs. (32) and (35). The
pressure AP is independent of the radius of the
particles, so AP is zero. Therefore, the
Ostwald ripening in this case approaches the
Ostwald ripening in fluid matrices, and the rate
equation is given as

f3_8aV§CCDC
U 9(1—a)RT

Therefore, in the case in which Fe cannot
diffuse and plastic deformation may occur, the
coarsening rate is only controlled by C diffu-
sion.

The situation is similar, when Fe can diffuse
slightly. In order to know the situation, we
calculate how fast AP decays by diffusion of
Fe. In this case diffusion is only maintained in
the elastic deformation field (F.<r<#,). From
the balance between the displacement # and
the flux of Fe

(37)
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du 1 (E)l Cr.Dr. (dﬂFe)
r=rF,

dr Cr \F/ RT \ dr

2va'sl)Fefb-i:c
=— 38
3Ce RTFIF,—T.) 38

1s obtained.
From the eq. (33)
=43
U o F.
—=—(1— —

is obtained, and differentiating the eq. (39) we
obtain

du 3odl—v) (Fc )2 dr,
Qu_oo V) (Fe) d% 4
de E F./ o dt (40)
So
P (P - D b @

91— V)CreRT (FololPo— (7ol

is given, where (7)o is the initial value of 7. and
given from the eq. (35).

VcE ik

LA [Wﬁ(l—v)as] '

Therefore, AP is given from the eqgs. {32) and
(42) as follows,

(42)

AP=2g,1n (;) ~20,In B
4g,EDk. t
— . , 43
9(1—v)Cr.RT FiBY1—aB) “43)
where
_ 13
PO g
Fa V(1 —V)o,

For the Fe-C system, as E/o is 1000-5000,
B is 5-6. So C diffusion control is effected
under the condition that the change in AP with
the lapse of time is relatively smaller than the
difference in the interfacial tension, i.e.

20 2 20 A40EDe ¢
Pa ra 3F - V)CpRT FiB(1—aB)
(45)
and
Fa 20, EDg. V.
g EDg. Vi (46)

17 36(1—v)RTBX1—aB)’

where aB should be less than 1.

2. Creep deformation control

In the case in which the eq. (46) can not be
effective or «B is greater than 1, the pressure
around the steady particle becomes zero while
the pressure around the growing or shrinking
particle reaches the level for the plastic defor-
mation to occur.

From the egs. (3) and (4), the following equa-
tions are obtained.

CreAurc+CclAuc=4pP (47)
and
3Auret+Auc=Vy(AP+20/r.,—20/F,). (48)
As Cc is small enough, we obtain
Auc=20Vs(1/r.—1/F)+ VAP, (49)

We assume that AP is large enough for the
plastic deformation to occur in the entire ter-
ritory of the growing particle (r=ry), i.e.

1
AP=2¢.In (ﬁ> =20, In (—)
x

a

(50)

Simultaneously we assume that Auc is nearly
zero not to delay the C diffusion with the ex-
istance of this pressure. We obtain

11 1
20V, (?—")‘:VCAP:ZUSVC ]n(—) D
F. Ta o

and

_ O'Va
T3, Vein(l/a)’

Fa (52)
where r,=1.5F,.

Now, the elastic limit o, should be taken to
equal the creep strength when the deformation
speed is very low. The relation between the
deformation speed & and the creep strength is
shown as follows.

£=A(os/E) exp (—Qc/RT). (53)

As the limit of the plastic deformation field is
r,, the deformation speed at r, can be con-
nected with the growing rate of the particle. So
we¢ obtain

. 1 /r dea(Vc) 1 (Vc)dra
—a [Ty Tafle) 1 (Yol gy
€ n,(ra) dr \ Vo/ re \ Vy/ dt (54)
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From the eqgs. (52), (53) and (54), we obtain

B (Ve %/ _
as“a3rb(V9) Aexp(—Qc/RT)

ds
gV n
2[3&.% ln(l/a):|
. aVs "
_[ch ln(lfaJ ‘

Integrating dr., we obtain

(33)

ri=no’Aexp (—Qc/RT)
o e am)

XN |\ — | m=——— | ¢, 6
( Ve/L2EVeIn (/o) (56)
where n, A and Qc are constant values given by
Sakurai ef al.®®. Substituting 1.5, for r,, we ob-
tain

Fa=noA exp (—Qc/RT)

() ] @
Ve 3EV: l[l(l/(x) . ( )

V. Consideration of
Cementite Growth

The experimental coarsening rates of cemen-
tite particles have been reported by Bannyh®,
Airey ef al.!"" Mukherjee et al."V, Vedula et
al."? and Sakuma et al."".

Sakuma'® resumed the experimental data
and gave the comment that the actual Ostwald
ripening rate is too small for C diffusion con-
trol and too large for the coupling diffusion
control given by Li ef al.®. He estimates that
the volume gap is dissolved by the formation
of both dislocations (plastic deformation) and
the coupling diffusion. This is probably correct
but not enough to explain the actual phe-
nomena.

Here we calculate the coarsening rates under
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the following conditions and compare them
with the actual coarsening rates.
(1) C diffusion control

[condition]
Ve E/ V(1 —Was< 1
fa ZGSEDFE VFe

¢~ 36(1—v)RTBX1—aB)’
where
B=[VcE/9Vi(1—V)a,]'"’.
[coarsening rate equation]

;=80 ViCe D

* 91—a)RT "’
(2) Creep deformation control
[coarsening rate equation)

Fi=nolA exp (—Qc/RT)

vl evoarm)
X = |t
VC 3EVC In (1/(1)

(3) Fe diffusion control (Coupling diffusion
control)
[coarsening rate equation)

SO-VEDFE (VFc)
91— a)RT \ VE

Numerical values used for the calculation
are shown in Table 1 and hereinafter.
o=0.7 J/m?.
Vee=7.1 X107 m*/mol.
Ve=2.1%10"%m*/mol.
Ve=23.4x10"° m*/mol.
a=r./rn=(mole fraction of C in steel
X Va/ V)2,
n=49%
A=3x10%51®,
Qc=218000 J/mol®,
Each calculation result is shown in com-
parison with the actual values® ¥ in Figs. 3

Fi=

Table 1 o, E, D, Dy, and C; in iron for calculation.
Temp. g, E N D Dy, Ce
K J/m I/m? m*/s m?/s mol/m’
773 1x10 11 x10" 0.33 4x10™ " 5x107% 0.3x10°"
873 8x 10’ §x10" 0.33 2x107" 1x107% 0.6x10°"
973 510 510" 0.33 gx107" 5% 107" 1.1x107"
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& BANMYM o =049 973K

O AIREY o =0.28

4 SAKUMA « =0.34

0 MUKHERJEE « =032

A x o =032 -
e A VEDULA ¥ =034~ 040 -

o= 0.49 ,,f’
(I) Carban diffusion -

fa., Mean particle radius/m

trs

Fig. 3 Comparison between experimental coarsening
and calculated one of cementite particles (973 K).

TI3K
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Ic; K =034 "_,.4'
—— V=049 e

il e
¢
10* P 1o
t/s

Fig. 4 Comparison between experimental coarsening
and calculated one of cementite particles (773 K).

and 4.

From this comparison, at 973K we can
think that the volume gap is dissolved either by
the coupling diffusion, i.e. Fe diffusion, or by
creep deformation. But at 773 K, we must
think that the volume gap is dissolved by creep
deformation only.

VY1. Summary and Conclusion

Ostwald ripening in solid matrices is studied
theoretically considering the stress around
dispersed particles induced by the volume gap.

The summary and conclusion are as follows;

(1) It is very important to correctly under-
stand the stress status in solid matrices,
whenever the vglume gap is dissolved by diffu-
sion or plastic deformation.

(2) For this purpose, starting from Gibbs-
Duhem relation, the relation between the stress
around particles and the diffusion was in-
vestigated, and under the condition that the
diffusion in matrix compensates the volume
gap, a ripening rate equation is derived as
follows;

8at 1 o 2}
9(I—a)RT/%: [CNDN (Cr= G-
The equation is a generalized one for multi-
component systems and covers solutions of Li
et al., Bjorklund ef al. and Wey et al.

(3) Under the condition that the creep
deformation takes place to compensate the
volume gap the equation is given as follows;

Fi=

Fi=no’A exp (—Q./RT)

() [ta]
V. L3EV.In (/)]

(4) The results of calculation have revealed
that the creep deformation is more dominant
than the Fe diffusion to compensate the
volume gap for cementite coarsening in ferrite
below 973 K.
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